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Feynman-Kac models
� {Qn}n∈N : a set of unnormalized transition kernels on the measurable

space (X,X )
� η0 : a probability distribution

Definition :
A sequence {ηn}n∈N of Feynman-Kac measures is defined, for all h ∈ Fb(X) by

ηnh =

∫
· ··
∫

h(xn) η0(dx0)
∏n−1

p=0 Qp(xp, dxp+1)∫
· ··
∫
η0(dx0)

∏n−1
p=0 Qp(xp, dxp+1)

(n ∈ N).

I The Feynman-Kac measures satisfy the nonlinear recursion

ηn+1 = ηnQn/ηnQn1X.

I Numerous applications (nonlinear filtering, rare event sampling, hidden
Markov chain parameter estimation, stochastic control problems, financial
mathematics...)
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Interacting particle systems (IPS)
Approximation of Feynman-Kac measures {ηn}n∈N :
� Kalman filter : exact simulation for linear Gaussian models.
� Otherwise, SMC methods : empirical approximation of ηn thanks to an

interacting particle systems {(ξN
n (i), ωN

n (i))}N
i=1.

The weighted sample evolves recursively according to selection and
mutation steps :

{(ξN
n (i), ωN

n (i))}N
i=1

Selection
−−−−−→ {(ξN

n (IN
n (i)), ωN

n (IN
n (i)))}N

i=1
Mutation
−−−−−→ {(ξN

n+1(i), ωN
n+1(i))}N

i=1

IN
n (i) ∈ J1,NK ξN

n+1(i) ∼ Rn(ξN
n (IN

n (i)), ·)
ωN

n+1(i) = ωN
n (IN

n (i)) wn(ξN
n (IN

n (i)), ξN
n+1(i))

where Rn is a proposal kernel and wn is the importance function such that
Qn(x , dy) = wn(x , y)Rn(x , dy) ((x , y) ∈ X2).

� Different kinds of selection may be considered :
I systematic resampling : ∀i , IN

n (i) ∼ Mult({ωN
n (k)}N

k=1) # bootstrap
algorithm [Ref : N.J. Gordon, D. J. Salmond, A. F. M. Smith (1993)]

I resampling of all the particles only when their weights are skewed
(Effective Sample size, coefficient of variation) [Ref : J. Liu, R. Chen (1993)]
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The bootstrap algorithm

/* Initialization */

for i ← 1 to N do
ξN
0 (i) ∼ η0;
ξN
1 (i) ∼ R0(ξN

0 (i), ·) ωN
1 (i)← w0(ξN

0 (i), ξN
1 (i));

end
for p ← 1 to n − 1 do

/* Selection step */

Sample {IN
p (i)}Ni=1 ∼i .i .d Mult({ωN

p (k)}Nk=1) ;
/* Mutation step */

for i ← 1 to N do
Sample conditionally independently
ξN

p+1(i) ∼ Rp(ξN
p (IN

p (i)), ·);
Update the weights ωN

p+1(i)← wp(ξN
p (IN

p (i)), ξN
p+1(i));

end
end
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Analysis of the bootstrap algorithm
Proposition : [Ref : P. Del Moral, Feynman-Kac formulae, 2004] [Ref : R. Douc and E. Moulines, 2008]

For all n ∈ N and h ∈ Fb(X), set ηN
n h ,

∑N
i=1 ω

N
n (i)h(ξN

n (i))/
∑N

k=1 ω
N
n (k).

Then,
ηN

n h −−−−−→
N→+∞

ηnh almost surely,
√

N(ηN
n h − ηnh) D−−−−−→

N→+∞
N(0,Vn(h)), where

V0(h) = η0{(h−η0h)2} and Vn(h) =
n−1∑
`=0

η`R`{w2
`Q`+1 · · ·Qn−1(h − ηnh)2}
(η`Q` · · ·Qn−11X)2 .

N E
[
ηN

n h − ηnh
]
−−−−−→
N→+∞

Bn(h).

� The precision of the estimation depends upon the size N of the particle
swarm ⇒ critical for online applications

� Develop new SMC methods to reduce the size of the particle swarm,
while ensuring good estimates ⇒ parallelization of SMC methods.
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Parallelization of SMC methods

� Spread the total number N , N1N2 of particles into N1
batches of N2 particles each.

� Each batch is called an island. Each island evolves
independently as a standard SMC algorithm with N2 particles.

� The N1 islands may be considered in a parallel architecture or
may interact through a selection step on the island level, when
assigning as island weight, the average of the particle weights
in an island.
I N1 independent bootstraps
I Double bootstrap (B2)
I Double bootstrap with adaptive selection on the island level

(B2ASIL)
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The B2ASIL algorithm
/* Initialization */
For all i ∈ J1,N1K and j ∈ J1,N2K,
ξN
0 (i, j) ∼ η0 ; ξN

1 (i, j) ∼ R0(ξN
0 (i, j), ·) ; ωN

1 (i, j)← w0(ξN
0 (i, j), ξN

1 (i, j)) ;

ΩN
1 (i)←

∑N2
j=1

ωN
1 (i, j)/N2;

for p ← 1 to n − 1 do
/* Island selection */
if CV2({ΩN

p (i)}N1
i=1) , N1

∑N1
i=1

(
ΩN

p (i)/
∑N1

i′=1
ΩN

p (i′)
)2
− 1 > τ then

For all i ∈ J1,N1K, IN (i) ∼ Mult({ΩN
p (i′)}N1

i′=1
) ;

else
For all i ∈ J1,N1K, IN (i)← i ;

end

/* Island mutation */
for i ← 1 to N1 do

/* Individual selection */
For all j ∈ J1,N2K, JN (i, j) ∼ Mult({ωN

p (IN (i), j′)}N2
j′=1

) ;

/* Mutation */
For all j ∈ J1,N2K, ξN

p+1(i, j) ∼ Rp(ξN
p (IN (i), JN (i, j)), ·);

ωN
p+1(i, j)← wp(ξN

p (IN (i), JN (i, j)), ξN
p+1(i, j));

ΩN
p+1(i)←

∑N2
j=1

ωN
p+1(i, j)/N2;

end
end
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Analysis of the B2ASIL algorithm
Denote by ηN

n h =
∑N1

i=1
ΩN

n (i)∑N1
i′=1 ΩN

n (i ′)

∑N2
j=1

ωN
n (i , j)∑N2

j′=1 ω
N
n (i , j′)

h(ξN
n (i , j)) the

estimators returned by the B2ASIL algorithm.
Theorem : [Ref : C. Vergé, P. Del Moral, E. Moulines, J. Olsson, preprint]

Let n ∈ N and h ∈ Fb(X). Then, ηN
n h P−−−−−→

N→+∞
ηnh.

Impose that for all β > 0, N1 exp(−βN2) −−−−−→
N→+∞

0. Then, for all n ∈ N, the random

variable 1{CV2({ΩN
n (i)}N1

i=1) > τ} has a deterministic limit εn in probability. Moreover,

√
N(ηN

n h − ηnh) D−→ N(0,Vn(h) + Ṽn(h)), where

V0(h) = η0{(h − η0h)2}, Ṽ0 = 0, andVnh =
n−1∑
`=0

η`R`{w2
`Q`+1 · · ·Qn−1(h − ηnh)2}
(η`Q` · · ·Qn−11X)2

,

Ṽnh =
n−1∑
`=0

n−1∑
p=`+1

εp
η`R`{w2

`Q`+1 · · ·Qn−1(h − ηnh)2}
(η`Q` · · ·Qn−11X)2

.
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Proof (sketch)

Proof (sketch)
The proof is by induction on n.
We decompose one iteration of the B2ASIL algorithm into elementary operations

I selection on the island level
I selection on the particle level
I mutation,

and show that each of them preserves a law of large numbers, a Hoeffding-type
inequality and a central limit theorem.

This general framework allows to derive a law of large numbers and a central
limit theorem for any algorithm that may be decomposed into these elementary
operations.
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A criterion to determine when islands should interact
Bootstrap N1 independent B2ASIL

bootstraps

Bias
Bn

N
Bn

N2

Bn + B̃n

N1N2

Variance
Vn

N
Vn

N1N2

Vn + Ṽn

N1N2

Explicit expressions of Bn, B̃n,Vn and Ṽn can be found in :

[Ref : C. Vergé, C. Dubarry, P. Del Moral, E. Moulines, Statistics and Computing, 2015]
[Ref : C. Vergé, P. Del Moral, E. Moulines, J. Olsson, preprint]

Use the mean squared error to make a compromise between bias and variance : island
interaction is beneficial when

Vn

N1N2
+

B2
n

N2
2
>

Vn + Ṽn

N1N2
⇔ N2 <

B2
n

Ṽn
N1.

When N2 << N1, the interaction is beneficial, but prevents a total parallelization.
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Stability of the double bootstrap (B2)
Note that the B2 algorithm, which selects systematically the islands, is a
particular case of B2ASIL algorithm for which τ = 0 (and hence εn = 1 for all
n ∈ N∗). We may hence furnish the asymptotic variance of the B2 algorithm :

σ2
n(h) =

n−1∑
`=0

(n − `)η`R`{w
2
`Q`+1 · · ·Qn−1(h − ηnh)2}
(η`Q` · · ·Qn−11X)2 .

Theorem [Ref : C. Vergé, P. Del Moral, E. Moulines, J. Olsson, preprint]

Suppose the standard strong mixing conditions :
(i) There exist constants 0 < σ− < σ+ <∞ and ϕ ∈ M1(X) such that for all

p ∈ N, x ∈ X, and A ∈ X , σ−ϕ(A) ≤ Mp(x ,A) ≤ σ+ϕ(A).
(ii) w+ , supp∈N ‖wp‖∞ <∞.

(iii) c− , inf(p,x)∈N×X Qp1X(x) > 0.

Then for all n ∈ N and h ∈ Fb(X), σ2
n(h) ≤ w+

osc2(h)
(1− ρ)2(1− ρ2)2c−

, where

ρ , 1− σ−/σ+.
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Context

� Consider a black box model :

Black box

� A rare event is often modeled by the exceedence of a threshold S :
{φ(X) > S} such that P(φ(X) > S) < 10−4.

I Risk analysis is not just evaluating a risk or a probability of failure, but
estimating the law of random phenomena that leads to a critic event.

� Some parameters θ of the model or density parameters of the input
random variables X may be fixed by the experimenter and can influence
the output random variable Y .

I We want to determine the impact of such tuning of parameters on the
realization of the critic event, i.e. to compute the law of the parameters
Θ conditionally on the rare event, denoted by π , Law(Θ|φ(X) > S).
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The splitting algorithm : a way to evaluate P(φ(X ) > S|Θ = θ)
[Ref : S-K. Au and J.L. Beck, Estimation of small failure probabilities in high dimensions by subset simulation, 2001]

Consider an increasing sequence of thresholds

−∞ , S0 < S1 < ... < Sm , S,

and decompose, using Bayes’ formula,

P(φ(X) > S|Θ = θ) =
m−1∏
p=0

P(φ(X) > Sp+1|φ(X) > Sp,Θ = θ).

Approximation using an SMC with N2 particles :
Xn(1)
.
.
.
.
.
.

Xn(N2)

 Selection
−−−−−−−−→
1{.≥Sn+1}


X̂n(1)
.
.
.
.
.
.

X̂n(N2)

 Mutation
−−−−−→


Xn+1(1)

.

.

.

.

.

.
Xn+1(N2)
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The splitting algorithm : a way to evaluate P(φ(X ) > S|Θ = θ)
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.
.
.
.
.
.

Xn(N2)

 Selection
−−−−−−−−→
1{.≥Sn+1}


X̂n(1)
.
.
.
.
.
.

X̂n(N2)

 Mutation
−−−−−→


Xn+1(1)

.

.

.

.

.

.
Xn+1(N2)


x0

S1

S2

T

Sm
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The SMC2 algorithm
I One way to sample from π , Law(Θ|φ(X) > S), is to use a standard SMC

algorithm with N1 particles {θn(i)}N1
i=1.

I For that purpose, we create a dynamic introducing intermediary thresholds
S1 < ... < Sm , S, and defining the distributions {πn}n∈N∗ by

πn(dθ) , Law(Θ|φ(X) > Sn).
I Instead of trying to sample directly from π, sample successively from

π1, . . . , πm , π.
I The particles {θn(i)}N1

i=1 evolve according to usual selection and mutation steps :

� Selection : Multinomial resampling with weights proportional to :
{P(φ(X) > Sn+1|φ(X) > Sn,Θ = θn(i))}N1

i=1,

� Mutation : An acceptance / rejection step involving the probabilities
P(φ(X) > S|θn(i)), which are not computable.

I For each parameter θn(i), we run a splitting with N2 particles {Xn(i , j)}N2
j=1, in

order to replace every incalculable quantity by an unbiased estimator.
We then have 2 embedded SMC algorithms # the SMC2 algorithm.

[Ref : N. Chopin, P. Jacob and O. Papaspiliopoulos, JRSSB, 2013]

[Ref : C. Vergé, J. Morio, P. Del Moral, preprint]
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Analysis of SMC2

Theorem :

The SMC2 algorithm converges to the target law π when N1 →∞, for any fixed N2.

Sketch of proof : The SMC2 algorithm can be viewed as an SMC algorithm on an
extended state space.

Toy case : threshold exceedence for a
Gaussian tail. We can compute explicitly
Law(Θ|X ≥ 5) when X ∼ N (Θ, 1) and
Θ ∼ N (0, 1).
In this simulation, we use 2000× 20
particles for the SMC2 algorithm.

Figure: Law(Θ|X ≥ 5)
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Application of SMC2 algorithm to the fallout zone of a launch vehicle
We apply SMC2 algorithm where φ simulates the distance between the true
position of the fallout zone of a stage rocket and its predicted position.
X is a Gaussian vector with covariance matrix equal to I4 and mean
θ = (θ1, θ2, θ3, θ4)t with a Gaussian prior i.e. for all i ∈ J1, 4K, θi ∼ N (0, 1).
The critic event is when the output distance φ(X) exceeds 0.72 km.
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θ1 : wind direction ; θ4 : descent angle.
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Influence of the parameters on the probability of interest

Monte Carlo estimates for different sets of parameters :

θ1 θ2 θ3 θ4 P̂ (φ(X ) > S|θ)
0 0 0 0 8.5 10−4
1 0 0 1 1.05 10−2
−1 0 0 1 1.02 10−2
−1 0 0 −1 1.14 10−2

I A bad tuning of the parameters can imply a large increase of
the probability of the critic event and an underestimation of
the associated risk ⇒ security matter.

[Ref : C. Vergé, J. Morio, P. Del Moral, preprint]
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Conclusions and perspectives
Conclusions :

I Introduction to island particle models,
I Definition of operations on islands,
I Establishment of a criterion to determine when islands should be

considered in parallel or may interact,
I Study of asymptotic properties of island particle models,
I Transposition of an existing island particle model for rare event analysis.

Application :
I Reliability analysis of a launch vehicle stage fallout.

Perspectives and future application :
I Application to reliability analysis for collision between a space debris and

a satellite,
I Study of the SMC2 algorithm.
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Thank you for your attention !
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